Cryptography

5 — Public-key encryption Il: Discrete logarithms

G. Chénevert
October 21, 2019

ISEN

ALL IS DIGITAL! ynerea

mailto:gabriel.chenevert@yncrea.fr

Today

Modular DLP

Modular exponentiation

For a given modulus n:

(8.6) = x=g°

RSA: hard to recover g from x even if £ is known

(essentially need to factor n)

" discrete £ root problem”

Discrete logarithm problem

Also hard to recover £ from x even if g is known!

Definition (Discrete logarithm)

log, x =¢ <= x = g¢,
g 14 n
where v is the multiplicative order of g, i.e. the smallest positive integer for which

v

g 1.

n

By Fermat’s theorem, we know in general that v | (n).

General fact

Logarithms never behave quite as well as exponentials.
(think: speed of convergence of power series, ...)

Meaning here: discrete logs can take much longer to compute than modular
exponentials.

Information can be hidden in exponents!

Example: x = 1769¢
2039

2000
1500

1000

Today

Applications

Secret sharing

Public-key encryption provides a partial solution to the problem of setting up a shared
private key for symmetric encryption on an insecure channel:

e Alice chooses secret k,
e encrypts it with Bob’s public encryption key,
e and sends it to him;

e Bob recovers k using his private decryption key.

Are there problems with that? (hint: yes)

”Symmetric” version

e Alice chooses kj and sends it to Bob using his public encryption key;
e Bob chooses kg and sends it to Alice using her public encryption key;
e Shared secret is k := ka @ kg.

Better: neither Alice nor Bob fully controls the final secret.

But two public encryption key pairs are needed. . .

Diffie-Hellman (1976)

e Alice and Bob agree on "safe” parameters n and g.
e Alice chooses «, computes a = g“ and sends it to Bob
n

e Bob chooses 3, computes b = g” and sends it to Alice
n

Shared secret is

Diffie-Hellman problem

Eve is faced with the problem:
given a and b, recover k.

We believe that her best line of attack is:

e compute a = log, a or 3 = log, b

e then easily deduce k = g®P.
n

Caveats

e Should always be used in conjunction with authentication to prevent
man-in-the-middle attacks

e Bob should check that Alice does not provide a value of a for which the discrete
log is easy

(same on Alice’s side)

Example: x = 1514¢
1856

ElGamal cipher (1985)

Essentially Diffie-Hellman + one-time multiplicative pad
Public parameters: n and g (can be reused)
Keys:

e) private decryption key

e e = g% public encryption key
n

Alice wants to send a message m € [0, n[to Bob.

Encryption

g

Alice chooses random o, computes s = g
n

Computes shared secret kK = e?
n

Computes encrypted c = k- m
n

Sends the pair (s, ¢)

Decryption

Upon reception of a pair (s, c), Bob

e Computes shared secret k = s°

n

e Recovers m=k=!.¢
n

Same caveats apply!

Today

Cryptanalysis

Attacks on the DLP

or: how to compute discrete logarithms

To understand how to choose "safe” parameters n and g we need to understand how
to force the DLP algorithms to be in the worst-case scenario.

Naive algorithm: brute-force the exponent
Takes at most O(v) < O(n) steps

= want g of large multiplicative order v (hence large n)

Chinese remainder theorem

If n= ny - ny with ny and ny coprime:

If £ is recovered modulo v and 15, it is then easily recovered modulo v = LCM(v1, 1)
—> n should be as prime as possible

Here, this means: n should be prime

CRT (again)

Hence take n a prime, so that ¢(n) = n— 1.

Remember we are looking for a value £ mod v | p(n).

If o(n) = n— 1 factors, we can speed up the process by working modulo the factors.
=—> n — 1 should be as prime as possible

Here, the best we can do is: n =2g + 1 with g prime

(n: safe prime, g: associated Sophie Germain prime)

Sophie Germain (1776-1831)

&

R0 BRI
(] g

8ok P premiex, impade, /
2+ 1€EP
FFEEI

<
EFS | a Poste 2016
PRI@posts

Primitive roots

Fact: For n prime, there exists in (Z/nZ)* an element of order n — 1.

Hence, for a safe prime:
(z/nZ)* ~Z)(n—1)Z T 2/22 x Z/qz

Most nonzero elements g have multiplicative order g or 2q.
Only two of them generate small subgroups:

1~(0,0) and —1~(1,0).

Baby-step giant-step

Time/memory trade-off on the naive algorithm to compute & = logg x.
Pick some base 8 and write £ = i3 + .

Baby step:

Compute and store all powers g/ mod n for j € [0, 3] in a table
Giant step:

For every i € [0, 5[, check if x - (g7?)" mod n is in the above table

Baby-step giant-step

Time complexity: O(8) + O(%)
Space complexity: O(p)

Often take 8 ~ /v to get time and space complexities

O(V7).

Other algorithms

There also exists a general-purpose probabilistic algorithm that takes (on average)
O(y/v) steps (and O(1) memory)

The General Number Field Sieve solves the modular DLP

— use same key lengths as for RSA

http://en.wikipedia.org/wiki/Pollard's_rho_algorithm_for_logarithms

Recall

140

120

40

security level

trial division

general number field sieve

key length

1000 2000 3000 4000

Generalized DLP

The nice thing about the DLP is that it can be asked in any abelian group G:

Given g € G and x such that

find § = log,(x), with v = ordg(g).

So far we used G = (Z/nZ)*, but there are other interesting groups...

Elliptic curves

- ~ B} o 4

generic ones

the

Best known DLP algorithms are

rity achieved by 2/-bit keys ©

— (-bit secu

	Modular DLP
	Applications
	Cryptanalysis

